Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1:1 Cocrystal of 2,5-bis(4-pyridyl)-1,3,4oxadiazole and pyridine-2,3-dicarboxylic acid

Yong-Tao Wang,* Gui-Mei Tang and Xu-Yang Qin

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250100, People's Republic of China

Correspondence e-mail: ceswyt@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.128$
Data-to-parameter ratio $=9.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] All rights reserved

In the title structure, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a twodimensional supramolecular framework.

Comment

Currently, hydrogen bonding is important in the areas of crystal engineering, supramolecular chemistry, materials science, and biological recognition (Desiraju, 1989; Jeffrey \& Saenger, 1991; Holman et al., 2001). Recently, angular dipyr-idyl-donor basic compounds, such as 2,5-bis(4-pyridyl)-1,3,4oxadiazole (bpo), have been used to produce a series of supramolecules with interesting structures (Du et al., 2006, and references therein; Wang et al., 2005a,b, 2006). To identify the properties of co-crystals of aromatic diacids with angular base components and to further understand the role of synthons in crystal engineering, we have prepared and determined the crystal structure of the acid-base co-crystal consisting of bpo and the heterocyclic carboxylic acid, pyridine-2,3-dicarboxylic acid (pdac).

(I)

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of one bpo molecule and one molecule of pdac. Bond lengths and angles are unremarkable. The bpo molecule is essentially planar; the dihedral angle between the oxadiazole ring ($R 1$) and the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ ring is $9.0(1)^{\circ}$, while that between $R 1$ and the $\mathrm{N} 4 / \mathrm{C} 8-\mathrm{C} 12$ ring is $1.8(1)^{\circ}$.
$\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the two molecules to form a helical supramolecular tape along the crystallographic [010] direction, as shown in Fig. 2. These onedimensional helical chains are further connected by weak C $\mathrm{H} \cdots \mathrm{O}$ interactions to form a two-dimensional corrugated network, as illustrated in Fig. 2. Further analysis of the crystal packing indicates that these two-dimensional undulating layers are interdigitated and adopt an antiparallel stacking mode in the unit cell. Numeric details of the hydrogen bonds are reported in Table 1.

Experimental

A DMF solution (10 ml) containing 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ($22 \mathrm{mg}, 0.1 \mathrm{mmol}$) (Wang et al., 2005a,b, 2006) was placed at the

Received 20 February 2006
Accepted 6 March 2006
bottom of a straight tube of 18 cm diameter. In the middle of the tube was placed a buffer layer of 1:1 DMF-methanol (10 ml). Pyridine-2,3dicarboxylic acid ($16 \mathrm{mg}, 0.1 \mathrm{mmol}$) in a methanol solution (10 ml) was then added above the buffer layer. After one week, colourless block-shaped crystals suitable for X-ray diffraction were obtained. Analysis found (\%): C 58.21, H 3.34, N $17.99 \% ; \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires (\%): C 58.31, H 3.35, N 17.90\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O} \\
& M_{r}=391.34 \\
& \text { Monoclinic, } C 2 / c \\
& a=17.576(3) \AA \\
& b=10.5434(18) \AA \\
& c=20.834(4) \AA \\
& \beta=111.674(3)^{\circ} \\
& V=3587.8(11) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$T_{\min }=0.968, T_{\max }=0.979$
8842 measured reflections

$$
D_{x}=1.449 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3072 reflections
$\theta=2-25^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

3072 independent reflections
2687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-19 \rightarrow 20$
$k=-12 \rightarrow 12$
$l=-23 \rightarrow 24$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0803 P)^{2}\right. \\
& +1.165 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
View of (I), showing displacement ellipsoids drawn at the 30% probability level.

Packing diagram (Spek, 2003), showing hydrogen bonds as dashed lines. H atoms have been omitted.

This work was supported by the Starting Fund of Shandong Institute of Light Industry (grant to YTW).

References

Bruker (2001). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.
Du, M., You, Y.-P. \& Zhang, Z.-H. (2006). Acta Cryst. C62, o33-o35.
Holman, K. T., Pivovar, A. M., Swift, J. A. \& Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, Y.-T., Tang, G.-M. \& Qin, D.-W. (2005a). Acta Cryst. E61, o3623-o3624.
Wang, Y.-T., Tang, G.-M. \& Qin, D.-W. (2005b). Acta Cryst. E61, o3979-o3980.
Wang, Y.-T., Tang, G.-M., Qin, D.-W. \& Duan, H.-D. (2006). Acta Cryst. E62, o45-046.

[^0]: (C) 2006 International Union of Crystallography

